

8° Curso de
ENGENHARIA
APLICADA ÀS
OBRAS DE
FUNDAÇÕES E
CONTENÇÕES

ESTACA ESCAVADA, BARRETE E RAIZ (EM SOLO E ROCHA): CONCEITOS BÁSICOS, EXECUÇÃO E ESTUDO DE CASOS

Eng. Celso Nogueira Corrêa

Introdução

O QUE É FUNDAÇÃO?

- ELEMENTOS ESTRUTURAIS
- TRANSMITEM PARA O SOLO AS AÇÕES ATUANTES NA ESTRUTURA CONDIÇÕES:
- 1- NÃO OCORRA RECALQUES PREJUDICIAIS AO SISTEMA ESTRUTURAL (ELS)
- 2- NÃO OCORRA RUPTURA DO ELEMENTO DE FUNDAÇÃO E NEM DO SISTEMA FUNDAÇÃO-SOLO (ELU).

A ESCOLHA DA FUNDAÇÃO DEVE CONSIDERAR:

- NATUREZA E CARACTERÍSTICAS DO SOLO, LENÇOL FREÁTICO (investigação geotécnica "in situ", poços de prova e ensaios de laboratório);
- TOPOGRAFIA, ARQUITETURA, VIZINHOS (projetos e visita ao local);
- DISPOSIÇÃO, GRANDEZA E NATUREZA DAS CARGAS (fornecidas pelo projeto de estrutura);
- LIMITAÇÕES DOS EQUIPAMENTOS DE FUNDAÇÕES EXISTENTES NO MERCADO E AS RESTRIÇÕES TÉCNICAS IMPOSTAS A CADA TIPO DE FUNDAÇÃO (conhecimento do engenheiro geotécnico de projeto e ou das empresa);
- **NOÇÕES DO CUSTO** (material, mão-de-obra, transporte) das soluções possíveis.

TIPOS DE FUNDAÇÃO: (NBR6122-2010)

FUNDAÇÃO DIRETA: Sapatas isoladas, sapatas corridas e radier.

FUNDAÇÃO PROFUNDA: São **ESTACAS** e tubulões (que podem ser a céu aberto e a ar comprimido).

ESTACAS: Podem ser divididas em pré-fabricadas e MOLDADAS "IN LOCO".

MOLDADAS "IN LOCO",

Brocas manuais

Estacas Escavadas peq. diâm.

Estacas Strauss

Hélice Contínua Monitorada

Franki

Micro estacas injetadas

Hollow Auger

Omega

RAIZ

ESTACA ESCAVADA GDE. DIÂM.

BARRETE

CRITÉRIOS DE PROJETO DIMENSIONAMENTO DO ESTADO LIMITE ULTIMO (ELU)

•Limite de ruptura do elemento estrutural

$$N_d = \frac{0.85. f_{ck}. A_c}{\gamma_c} + \frac{A_s. f_{yk}}{\gamma_s}$$

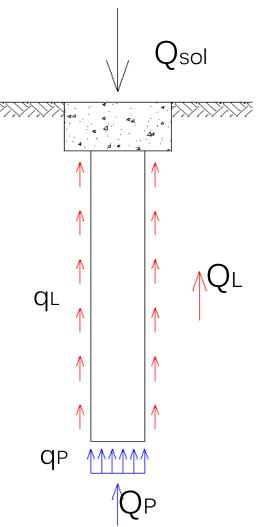
DIMENSIONAMENTO CARGA DE RUPTURA (ELU) SISTEMA ESTACA-SOLO

$$Q_{Rup} = Q_P + Q_L$$

QRup = AP.qP + U.Σ(
$$\Delta \ell$$
.qL)

Em que:

Q_{Rup}: carga de ruptura do sistema (ELU);


Ap: área de ponta;

qp: resistência de ponta;

U: perímetro da estaca;

qı: adesão lateral;

 $\Delta \ell$: comprimento da estaca na camada

CRITÉRIOS DE PROJETO DIMENSIONAMENTO DO ESTADO LIMITE ULTIMO (ELU)

CARGA DE PONTA - QP PARA ESTACAS MOLDADAS IN LOCO

NBR6122 - 2018

8.2.1.2 MÉTODOS ESTÁTICOS

"....SEMPRE QUE *(O PROJETO)* CONSIDERAR A CONTRIBUIÇÃO DA RESISTÊNCIA DE PONTA, DEVE FAZER MENÇÃO EXPLÍCITA A ESSE CRITÉRIO. O EXECUTOR DEVE ASSEGURAR QUE SERÃO CUMPRIDOS PROCEDIMENTOS MÍNIMOS ESPECIFICADOS NOS ANEXOS J E N, DE FORMA A OBTER O CONTATO EFETIVO ENTRE A PONTA E O SOLO COMPETENTE OU ROCHA. NESSAS CONDIÇÕES QP TEM COMO LIMITE O QL. CASO ESSE CONTATO EFETIVO NÃO POSSA SER ASSEGURADO QP = 0....."

CRITÉRIOS DE PROJETO DIMENSIONAMENTO DO ESTADO LIMITE DE SERVIÇO (ELS)

•Limite de recalques e deslocamentos excessivos

DIMENSIONAMENTO CARGA ADMISSÍVEL - ELS

CARGA ADMISSÍVEL:

- NÃO CAUSA RUPTURA,
- RECALQUES ADMISSÍVEIS PELA ESTRUTURA.

Qadm não deve causar recalques excessivos (ELS):

PORTANTO A CARGA MÁXIMA APLICADA PELA ESTRUTURA (Q_{SOL}) PODE SER NO MÁXIMO IGUAL A CARGA ADMISSÍVEL

 $Q_{sol} \leq Q_{adm}$

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE: ESTACÕES E BARRETES

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE

Existem dois tipos de estacas escavadas com fluido estabilizante:

- a) **ESTACÕES**: circulares $0,60 \le D \le 2,50$ m, escavadas por rotação.
- b) BARRETES OU ESTACAS DIAFRAGMA: retangulares, escavadas com "clam-shells". 0,30 a 1,20 m na menor dimensão e 2,50 e 3,20 m na maior dimensão, ou ainda formando figuras geométricas com esses elementos.

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE Definições e características

- moldadas in loco
- fluido estabilizante (lama bentonítica ou polímero) cuja função é estabilizar as paredes das escavações, manter resíduos da escavação em suspensão. O ideal é que o nível da lama na escavação esteja pelo menos 2,00 m acima do nível do lençol freático.
- cargas elevadas
- condições adversas do subsolo, tais como solo mole, areias fofas lençol freático a pouca profundidade etc.

OBS: Por questões ambientais, o uso dos polímeros, ou técnicas para substituição da lama bentonítica vem sendo muito utilizadas.

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE

Características do fluido estabilizante - Lama

TABELA DA NBR 6122-2018

Propriedades	Valores	Equipamentos para ensaio
Densidade	1,025 g/cm3 a 1,10 g/cm3	Densímetro
Viscosidade	30 s/qt a 90 s/qt	Funil Marsh
рН	7 a 11	Indicador de pH
Teor de areia	Até 3 %	Baroid sand content ou similar

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE

Características do fluido estabilizante - Polímero

TABELA DA NBR 6122-2018

Propriedades	Valores	Equipamentos para ensaio
Densidade	1,005 g/cm3 a 1,10 g/cm3	Densímetro
Viscosidade	35 s/qt a 120 s/qt	Funil Marsh
рН	8 a 12	Indicador de pH
Teor de areia	Até 4,5 %	Baroid sand content ou similar

Densidade – Balança de lama

Viscosidade

PH

Teor de Areia

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE Características do concreto

- fck ≥ 30 Mpa (C30)
 - Consumo mínimo de cimento = 400kg/m³
 - Abatimento ("Slump-test") = 22 + 4 cm
 - Fator água/cimento ≤ 0,60
 - Diâmetro máximo do agregado entre 9,5 e 25 mm.
 - Teor de exsudação ≤ 4%.

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE Características

- não causa vibração,
- Baixo índice de ruído
- necessita de área relativamente grande para a instalação dos equipamentos e acessórios necessários à sua escavação;
- Pode ser executada de uma cota muito acima do arrasamento.
- Os métodos semi-empíricos de cálculo de capacidade de carga mais utilizados para esse tipo de estaca são Davi Cabral, Aoki-Veloso adaptado, Décourt-Quaresma adaptado e Teixeira.

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE Métodos de previsão de capacidade de carga

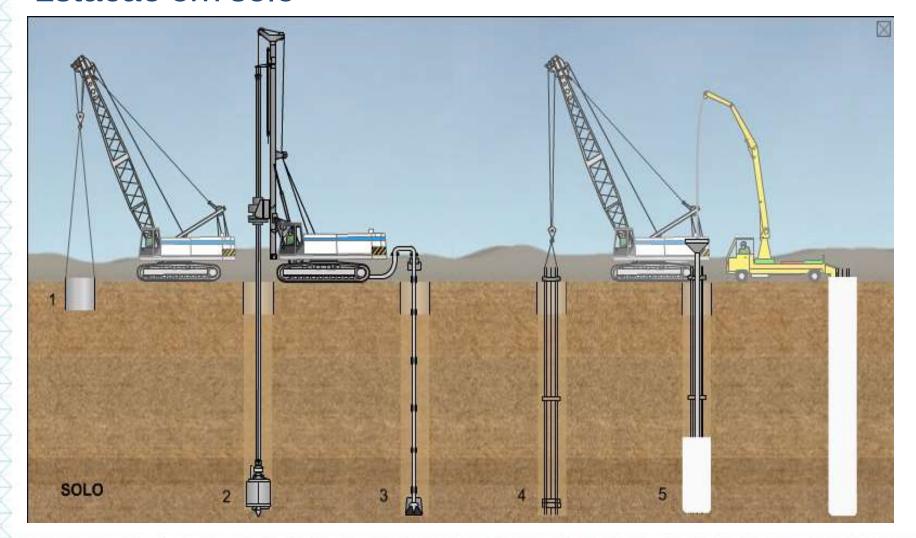
Métodos teóricos

Para o dimensionamento de fundações profundas, foram desenvolvidos métodos teóricos sobre a interação estaca-solo envolvendo diversos parâmetros geotécnicos relacionados à natureza do solo que, na maioria das vezes, não são facilmente obtidos.

"Além do mais, uma variação de apenas 5° no ângulo de atrito, de 30° para 35°, pode significar um aumento de aproximadamente 100% na capacidade da carga, segundo Vesic (1963) e Berezantsev et al (1961), ou de cerca de 150%, segundo Meyerhof (1951)."

Décourt, 1996

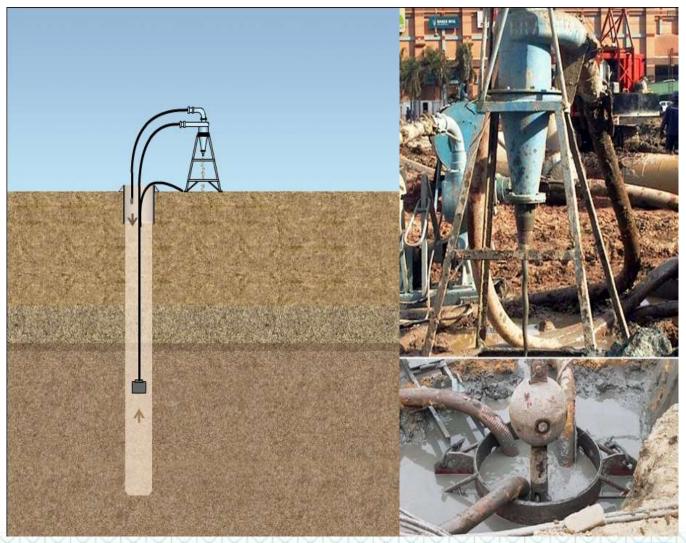
ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE Métodos de previsão de capacidade de carga


Métodos semi-empíricos

Por conta da complexidade dos parâmetros dos métodos teóricos, muitos pesquisadores desenvolveram métodos semi-empíricos baseados em estudos estatísticos, retroanálise de provas de carga e em sua própria experiência, levando em consideração as características do solo de determinada região. Os mais utilizados para estacas escavadas são:

- Décourt-Quaresma (1978);
- Aoki-Velloso (1975);
- •Teixeira (1996);
- •David Cabral (estacas em rocha) (2000).

EXECUÇÃO DAS ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE


ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE

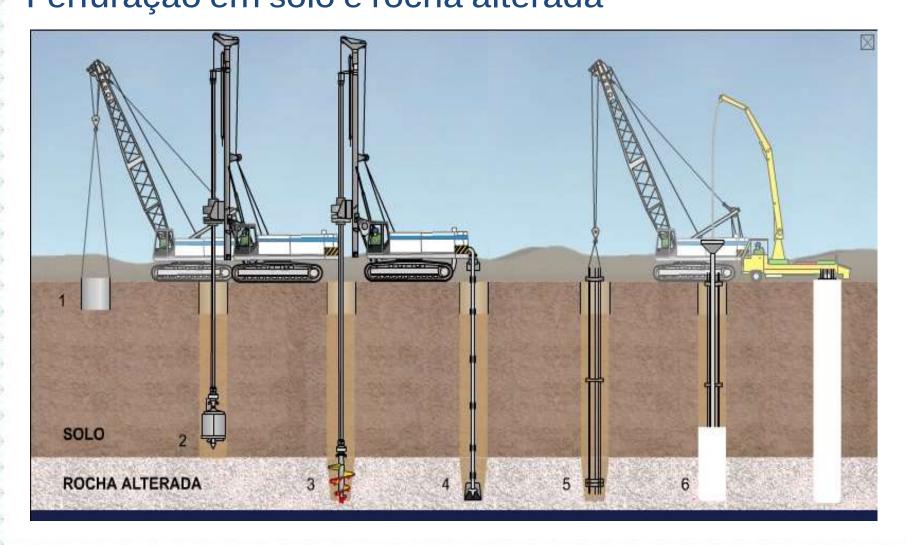
ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE Arrasamento das estacas

Estaca concretada, pronta para ser arrasada

Arrasamento das estacas

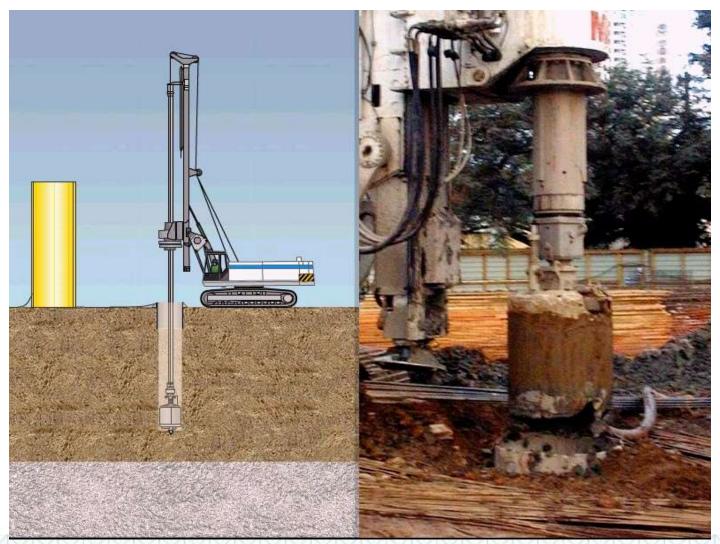
Arrasamento das estacas, executado com rompedor na posição horizontal.

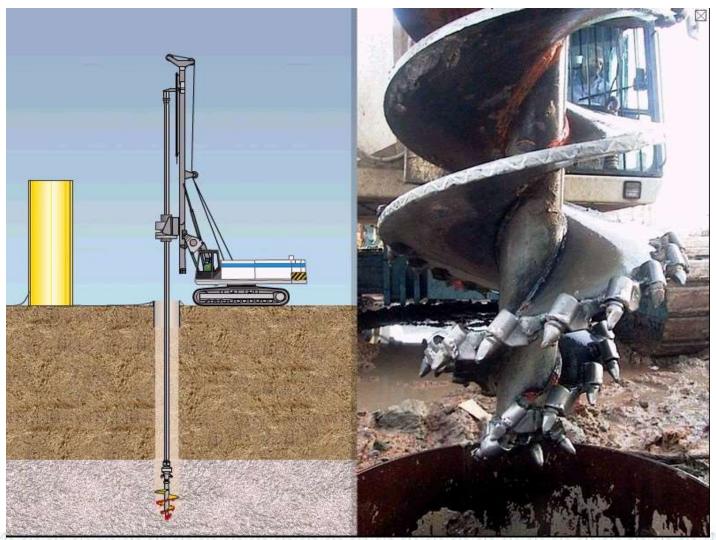
Cabeça, plana, horizontal e 5 cm acima do lastro de concreto magro.

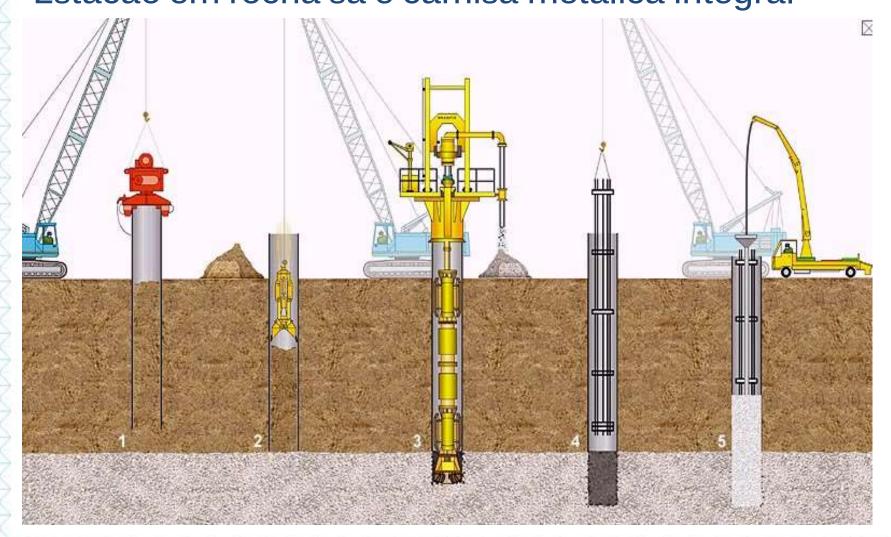


SEQUÊNCIA EXECUTIVA

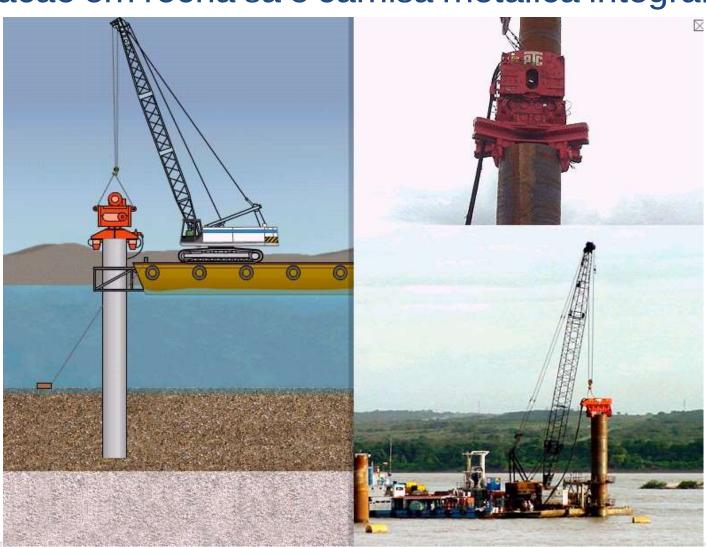
ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE Perfuração em solo e rocha alterada



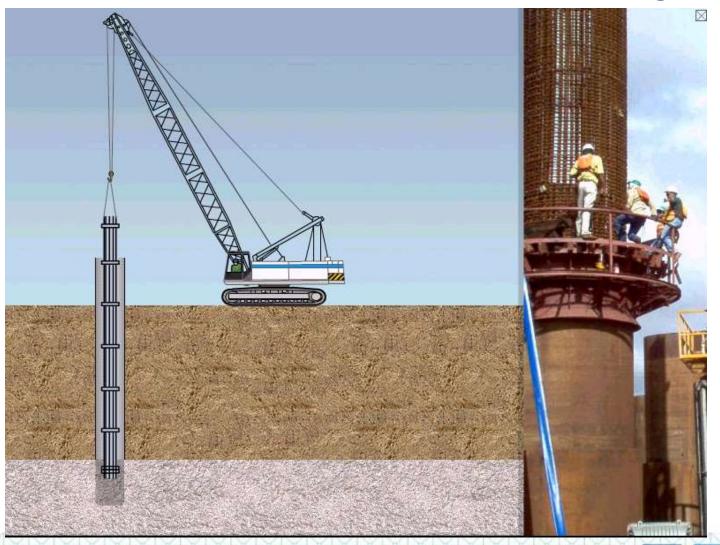




ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE Estação em rocha sã e camisa metálica integral

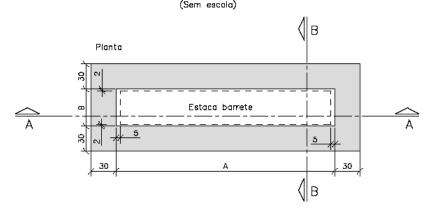

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE

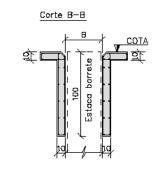
Estação em rocha sã e camisa metálica integral


ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE Estação em rocha sã e camisa metálica integral

ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE

Estação em rocha sã e camisa metálica integral




ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE

Estação em rocha sã e camisa metálica integral

DETALHE DE MURETA GUIA PARA BARRETE

Corte A-A		
ø6,3mm cada 20cm comp.=76cm		Ø6,3mm cada 20cm camp.=76cm
7 22 7 3 5 1.	A	3 ⁷⁻²² 17
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Estaca barrete	5 COTA 73 97 97 97 97 97 97 97 97 97 97 97 97 97

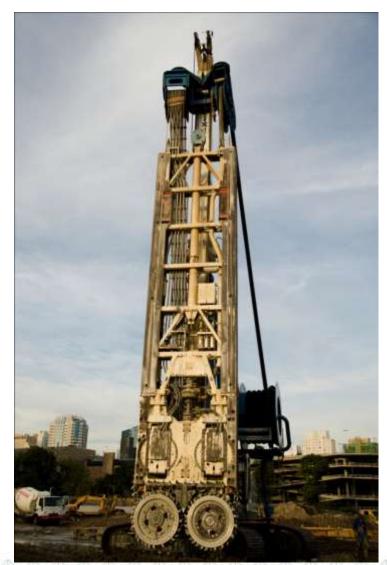
Barrete		Peso do Aço por mureta guia					
Dimensões		Aço CA 50 [kg]					
Α	В	ø6,3mm	₫₿mm	TOTAL			
250	40	25,76	40,13	65,89			
320	40	31,48	79,91				
250	50	25,76	41,32	67,08			
320	50	31,48 49,61		81,09			
250	60	27,18	42,50	69,68			
320	60	32,91	50,80	83,71			
250	70	27,18	43,69	70,87			
320	70	32,91	51,98	84,89			
250	80	28,62	44.87	73,49			
320	80	34,34	53,17	84,48			

CONCRETO fck > 20 MPa

BARRETE - MURETA GUIA

Equipamento – perfuração em solo:

Vídeo: Escavação com "clam shell". Fonte: Acervo ZF.

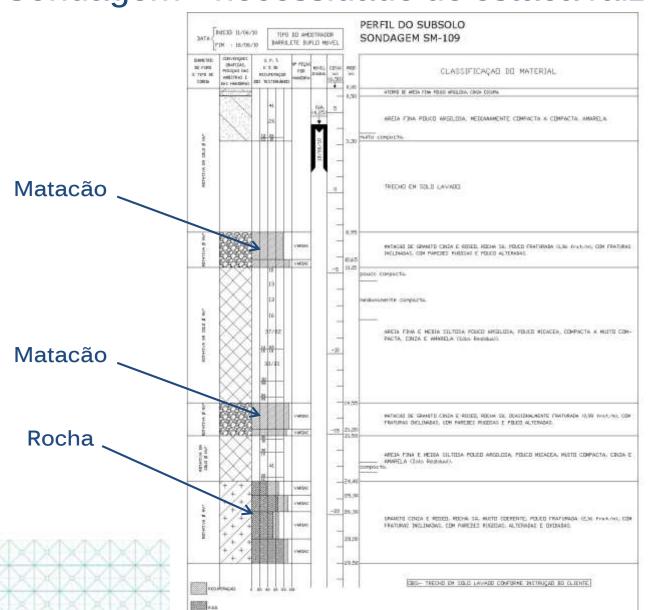


ESTACAS ESCAVADAS COM FLUIDO ESTABILIZANTE

Estacas barrete

Equipamento – perfuração em rocha:

Equipamento – fresa:


Vídeo: Arrasamento de estaca barrete. Fonte: Acervo ZF.

ESTACAS RAIZ Definições e propriedades

- · diâmetro, entre 150 e 500 mm,
- elevada capacidade de carga
- essencialmente de resistência por atrito lateral,
- •Indicada para locais de difícil acesso subsolo com presença de matacões, reforço de fundações existentes, entre outros;
- •com rocha na ponta, pode ser empregada também como estaca com resistência de ponta.
- •tem a vantagem de **atravessar** qualquer tipo de terreno, inclusive **rocha**, **matacão**, **concreto armado e alvenaria**.
- Não causam vibração nem alívio de tensões do terreno.

Sondagem – necessidade de estaca raiz

Métodos de previsão de capacidade de carga

David Cabral (1986)

O método de David Cabral leva em conta a pressão de injeção da nata de cimento durante o processo de execução e a variação de camadas atravessadas pela estaca.

$$Pr = Pl + Pp$$

$$PI = \beta_0 \beta_1 N U AI$$

$$Pp = \beta_0 \beta_2 N Ab$$

Essa expressão é válida para pressão de injeção de até 0,4 MPa.

Métodos de previsão de capacidade de carga

Lizzi (1985)

$$P_R = \alpha. N_P. A_P + \beta. N. P. L$$

α: coeficiente que depende do tipo de solo em que se situa a ponta da estaca;

N_P: média dos valores dos SPTs medidos 1m acima e 1m abaixo da ponta da estaca (valores acima de 40 golpes devem ser tomados iguais a 40);

AP: área de ponta da estaca;

β: índice de atrito lateral;

N: média dos valores dos SPTs medidos ao longo do fuste da estaca;

P: perímetro do fuste da estaca;

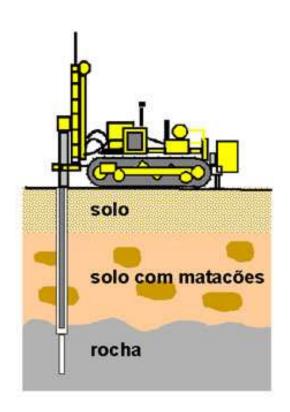
L: comprimento útil da estaca.

$$P_{AD} = \frac{P_R}{2}$$

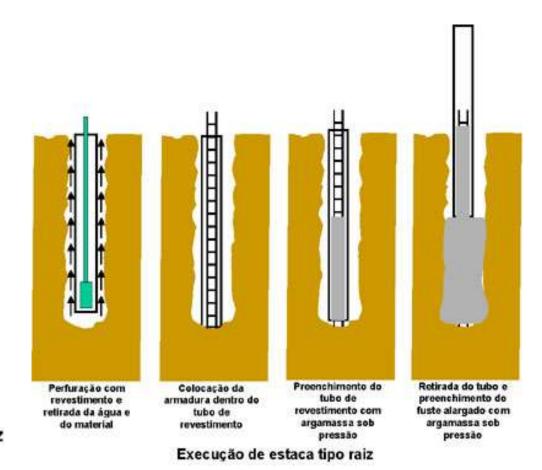
Pad: carga admissível.

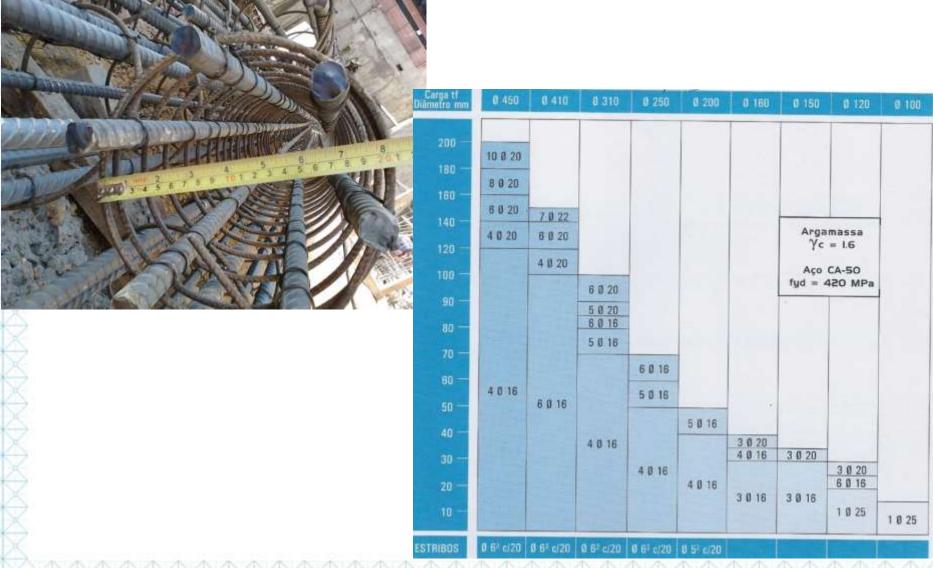
Procedimento

1. Perfuração: é realizada por rotação de tubos auxiliada por circulação de água. Na extremidade do tubo é acoplada uma coroa de perfuração adequada às características geológicas da obra.



Procedimento


2. Instalação da armação: após a perfuração, continua-se com a injeção de água sem avançar a perfuração, para limpeza do furo. A seguir instala-se a armadura.



Equipamento de perfuração de estacas raiz

1 - Diâmetro da estaca (mm)	450	410	310	250	200	160	150	120	100
2 - Diâmetro externo do tubo (mm)	406	355	275	220	168	140	127	102	80
3 - Área de secção transversal (cm²)	1590	1320	755	491	380	201	177	113	79
4 - Perímetro da estaca (cm)	141	126	98	79	63	50	47	38	31
5 - Distância mínima entre eixos (cm)	135	130	100	80	70	60	60	60	60
6 - Distância mínima eixo-divisa (cm)	40	30	30	30	30	30	30	30	30
7 - Diâmetro extreno do estribo (mm)	330	280	200	155	110	4	1		
8 - Diâmetro interno da coroa (mm)	374	323	235	180	133	120	105	72	60
9 - Diâmetro da estaca em rocha (mm)	355	305	228	178	127	101	76	E w	- 1
10 - Cimento (kg)	163	135	70	50	30	20	15	10	8
11 · Area (L)	272	226	113	75	47	30	27	17	12
12 - Armação long. mínima CA-50 (mm)	10 Ø 20	6 Ø 20	6 Ø 20	6 Ø 16	5 Ø 16	4 Ø 16	3 0 16	1 Ø 25	1 0 25
13 - Estribo CA-25 (mm)	0 6,3	0 6,3	0 6,3	0 6,3	05				

(Fig.01)

(Fig.04)

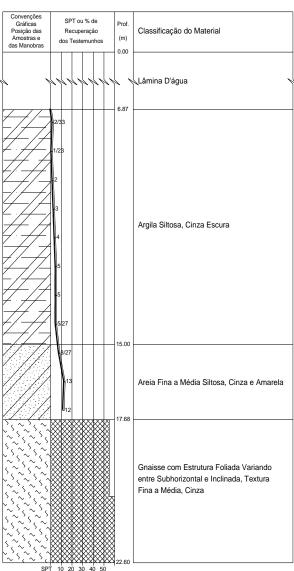
(Fig.03)

(Fig.02)

Vídeo: Estaca raiz – perfuração em rocha. Fonte: Acervo ZF.

ESTACAS RAIZ Reforço de fundações

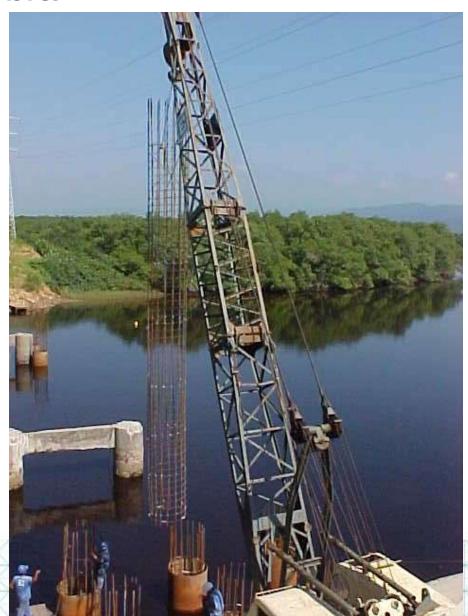
ESTACAS RAIZ Reforço de fundações

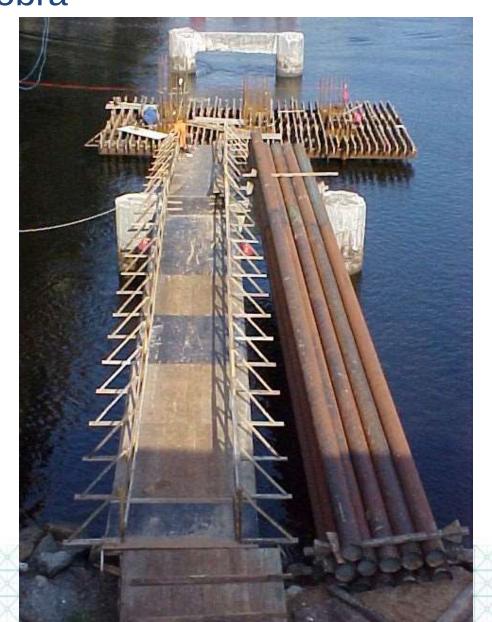


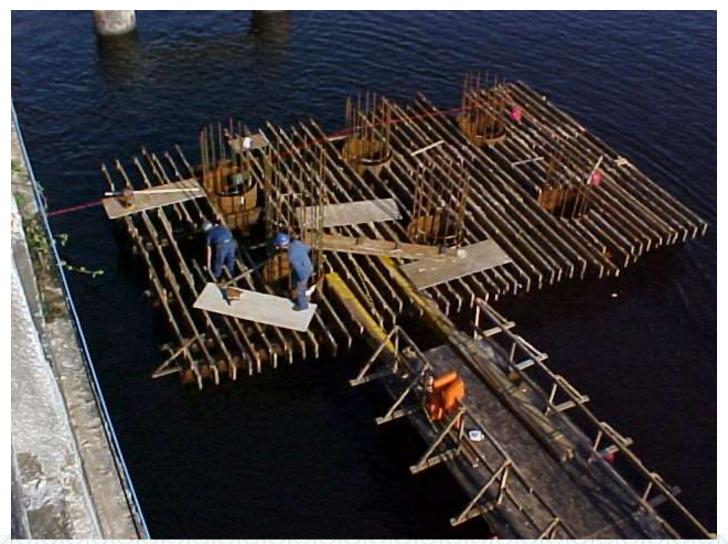
Caso de obra onde foram utilizadas as duas soluções combinadas.

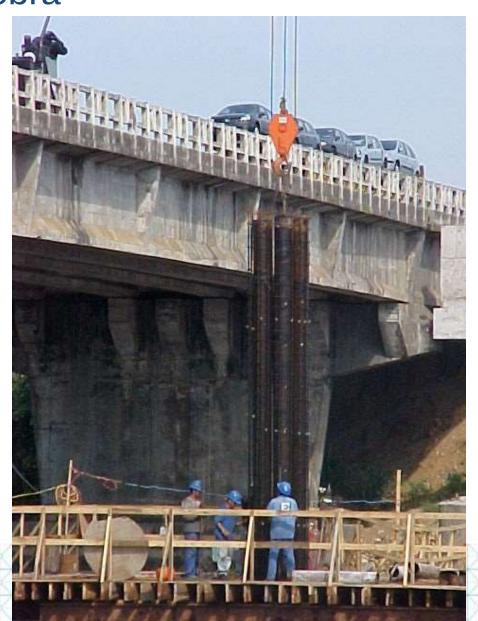
ESTACAS RAIZ E ESTACÃO Casos de obra Convenções SPT ou % de Prof. Convenções Sept ou % de Prof

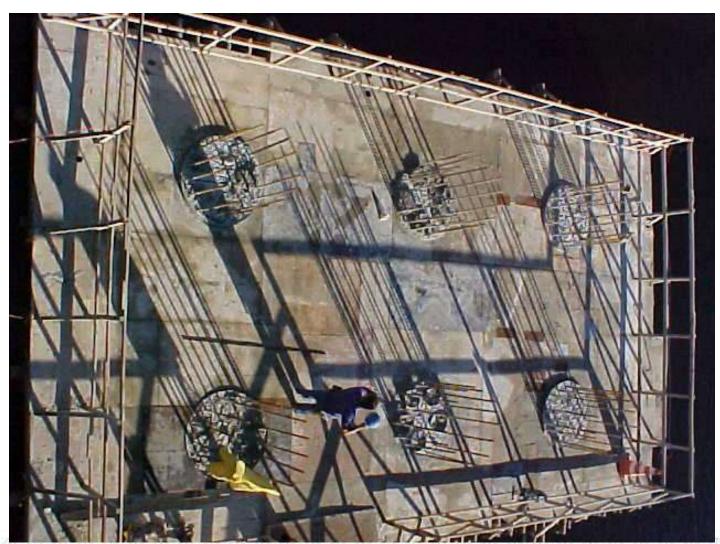
Sondagem

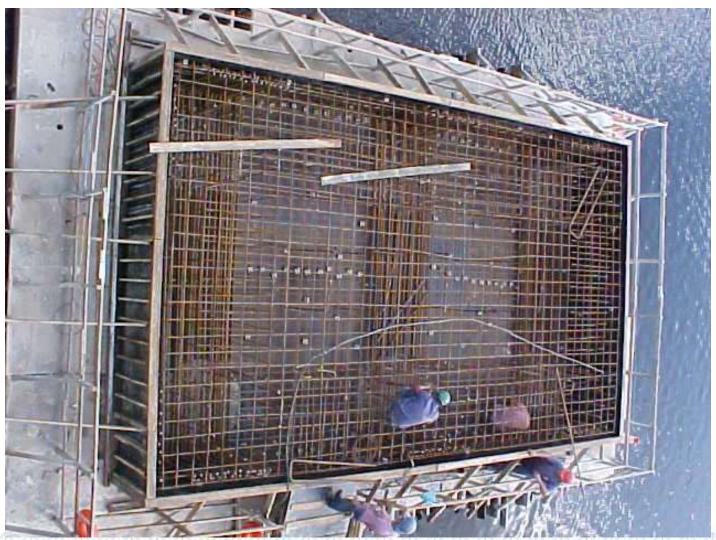












FIM OBRIGADO CELSO@ZFSOLOS.COM.BR